Eukaryotic cells contain transmembrane helix dislocase

Michael J. McKenna*, Sue Im Sim*, Alban Ordureau, Lianjie Wei, J. Wade Harper, Sichen Shao†, Eunyong Park†

INTRODUCTION: Eukaryotic cells contain membrane-bound organelles with distinct identities and functionalities that depend on protein composition. Correct localization of proteins is thus critical for organelle function and cellular homeostasis. The endoplasmic reticulum (ER) and mitochondrial outer membrane are the primary destinations for newly synthesized proteins with hydrophobic transmembrane segments (TMs). Membrane protein localization requires not only high-fidelity protein targeting but also quality control mechanisms that selectively remove mislocalized proteins. At the mitochondrial outer membrane, the ATP-dependent motor protein Msp1/ATAD1 removes some mislocalized transmembrane proteins. By contrast, although protein targeting to the ER is well studied, the mechanisms that remove mistargeted transmembrane proteins from the ER membrane are incompletely understood.

RATIONALE: As a model to study membrane protein localization, we focused on tail-anchored proteins, which contain a single C-terminal TM that is necessary and largely sufficient for organelle localization. We reasoned that factors that mediate mitochondrial tail–anchored protein localization would interact directly with nascent proteins. We used an unbiased, site-specific cross-linking and mass spectrometry approach to identify such protein TMs. This approach revealed that the ER-resident orphan P-type pump P5A-ATPase (Spf1 in yeast; ATP13A1 in humans) interacted directly with a mitochondrial tail–anchored protein. Because genetic studies have linked the P5A-ATPase to mitochondrial tail–anchored protein localization, we focused on tail–anchored proteins in different conformations at 3.3 to 3.7 Å resolution, revealing that the P5A-ATPase has an atypically large substrate-binding pocket compared with other P-type ATPases with known structures. The pocket alternately opens toward the ER lumen and cytosol while remaining accessible to the lipid bilayer through a lateral opening. Trapping putative substrates for structure determination revealed an additional membrane-spanning density at the lateral opening, which resembles an α-helical TM. Together with proteomics of wild-type and P5A-ATPase knock-out cells, our results indicate that the P5A-ATPase can dislocate moderately hydrophobic TMs with short hydrophilic luminal domains that misinsert into the ER.

CONCLUSION: Our findings define the function of the P5A-ATPase as a dislocase of TMs at the ER membrane. This assignment establishes polypeptides as P-type ATPase transport substrates in addition to ions and lipids. Active dislocation of misinserted proteins from the ER by the P5A-ATPase also represents a previously unknown cellular safeguarding and quality control mechanism that helps maintain ER and mitochondrial homeostasis, possibly explaining the pleiotropic phenotypes linked to P5A-ATPase dysfunction.

The list of author affiliations is available in the full article online.
*These authors contributed equally to this work.
†Corresponding author. E-mail: sichen_shao@hms.harvard.edu (S.S.); eunyong_park@berkeley.edu (E.P.)

Cite this article as M. J. McKenna et al., Science 369, eabc5809 (2020). DOI: 10.1126/science.abc5809

READ THE FULL ARTICLE AT
https://doi.org/10.1126/science.abc5809
more than one-third of the proteome in eukaryotes consists of membrane and secretory proteins with diverse hydrophobic sequences that must insert correctly into the appropriate cellular membrane. Protein mistargeting causes organelle dysfunction and cellular and organismal stress (1, 2), underscoring the importance of quality control (QC) mechanisms that remove mislocalized proteins. Defined by a single C-terminal transmembrane segment (TM), tail-anchored (TA) proteins pose a distinct sorting challenge because they rely exclusively on post-translational mechanisms to localize to the endoplasmic reticulum (ER), mitochondria, or peroxisomes. Although TA protein targeting to the ER is well studied (3), how cells remove mistargeted TA proteins from the ER and properly localize non-ER TA proteins is poorly understood.

A yeast genetic screen for mutants that disrupt mitochondrial TA protein localization identified only SPFF1, the deletion of which results in mitochondrial TA protein accumulation at the ER (4). SPFF1 encodes the ER-resident orphan P5A–adenosine triphosphatase (ATPase), a conserved subtype of the eukaryotic-specific P5 subfamily of P-type ATPases. P-type ATPases are a major class of active transporters found in all organisms that pump substrates across membranes through conformational changes driven by phosphorylation and dephosphorylation of a conserved aspartate (5–7). Among the five subfamilies categorized by sequence similarity, the functions of P1- to P3-ATPases as cation transporters and P4-ATPases as lipid flippases are well defined. In addition, ATP13A2, one of four mammalian P5B-ATPases, was recently proposed to be a lysosomal polyamine transporter (8). Otherwise, little is known about the substrates and biological functions of P5-ATPases.

Humans and yeast each have a single P5A-ATPase, ATP13A1 and Spf1, respectively, which likely perform a conserved task based on functional complementation (9, 10). In addition to disrupting TA protein localization and turnover (4, 11), mutating SPFF1 causes a wide spectrum of phenotypes, including induction of the ER unfolded protein response, defects in lipid and sterol homeostasis, and dysregulated protein N-glycosylation, topogenesis, and turnover (10, 12–20). It has been speculated that these pleiotropic phenotypes may be explained by the P5A-ATPase functioning as a mammalian or calcium transporter or as a lipid flipase (13–15, 18, 21). However, direct evidence supporting any of these functions is missing, and the identity of physiological P5A-ATPase substrates remains elusive. Here, using cell-free reconstitutions, high-resolution cryo-electron microscopy (cryo-EM), and proteomics, we found that the P5A-ATPase could dislocate moderately hydrophobic terminal transmembrane helices from the ER membrane, a mechanism required to ensure correct mitochondrial TA protein localization.

The P5A-ATPase interact directly with TMs

We used an unbiased strategy to identify factors that interacted directly with a model TA protein containing the mitochondrial OMP25 TM during reconstituted targeting reactions (Fig. 1A). We incorporated the ultraviolet (UV) light-activated cross-linker p-benzoyl-L-phenylalanine (Bpa) into the TM [referred to as TA(Bpa)] and purified recombinant, FLAG-tagged TA(Bpa) in complex with calmodulin (CaM), a calcium-dependent TM chaperone (fig. S1A) (22, 23). We confirmed that FLAG-TA(Bpa) released from CaM by EGTA formed UV-dependent cross-links to the TM chaperone SGT1 (24) (Fig. 1B and fig. SIC). When we released FLAG-TA(Bpa) in the presence of crude yeast membranes that could reconstitute TM insertion (fig. S1B), we observed cross-links to various proteins. Because photocross-linking generates covalent adducts, we expected this approach to enrich for otherwise transient interactions made by substrates undergoing targeting or QC. Indeed, tandem mass tag mass spectrometry (TMT-MS) analysis of UV-dependent membrane interactors of FLAG-TA(Bpa) identified known mitochondrial protein receptors and QC factors (Fig. 1C, fig. S1D, and data S1) (25–27). Unexpectedly, the ER-resident P5A-ATPase Spf1 was a prominent UV-dependent interactor of FLAG-TA(Bpa) (Fig. 1, C and D).

Although Spf1 has been linked to mitochondrial TA protein mislocalization (4, 11), a direct interaction has not been reported. To confirm the interaction between the P5A-ATPase and TA proteins, we translated radiolabeled TA(Bpa) in vitro and performed site-specific cross-linking with crude yeast membranes or human ER-derived rough microsomes (RMs) containing FLAG-tagged Spf1 or ATP13A1, respectively. UV-dependent TA protein cross-links to each P5A-ATPase were detected after denaturing immunoprecipitations (Fig. 1E and fig. S2). Cross-linking was specific to Bpa positioned within the TM, but not the cytosolic domain, and was enhanced by flanking C-terminal sequences that contain basic residues (Fig. 1E), a common feature of mitochondrial TA proteins. Thus, the P5A-ATPase interacts directly with TMs.

ATP13A1 mediates ATP-dependent TM dislocation

To investigate whether P5A-ATPase activity affected TA protein localization to the ER, we performed in vitro insertion reactions of radiolabeled TA protein with RMs isolated from wild-type (WT) or ATP13A1 knockout (KO) cells without or with reexpression of ATP13A1 (fig. S3A). TA protein containing the OMP25 TM preferentially accumulated in RMs lacking WT ATP13A1 activity (fig. S3, B to D). Two possibilities may explain this result: deleting ATP13A1 may enhance TM insertion (4) or it may impair TM extraction. To distinguish between these scenarios, we uncoupled OMP25 TM insertion and extraction by reisolating RMs...
after short insertion reactions for extraction assays with an energy-regenerating system and excess SGTA to sequester dislocated TMs (Fig. 2A) (28). WT RMs displayed higher extraction activity than KO RMs based on the amount of TA protein dislocated into the soluble fraction and bound to SGTA (Fig. 2, B and C, and fig. S4A). TM removal required ATP (fig. S4B), and the impaired dislocation activity of KO RMs was rescued by WT ATP13A1, but not D533A ATP13A1, a catalytically inactive variant in which the conserved phosphorylation site required for transport is mutated. Thus, ATP13A1 mediates ATP-dependent removal of a mitochondrial TM from the ER.

ATP13A1 minimizes TA protein mislocalization

We next investigated how ATP13A1 affects TA protein localization in human cells. In WT cells, FLAG-tagged mitochondrial TA protein reporters containing either the OMP25 or BAK1 TM (referred to as OMP25 or BAK1, respectively) localized to mitochondria as expected (Fig. 2, D and E, and fig. S5, A and B). Knocking out ATP13A1 resulted in substrate-specific changes in TA protein levels: OMP25 levels decreased and BAK1 levels increased (fig. S5, C and D). Both mitochondrial TA proteins displayed increased mislocalization to the ER and other secretory pathway organelles in ATP13A1 KO cells (Fig. 2D and figs. S5 and S6), consistent with sgp3Δ yeast phenotypes (4, 11). Localization of TA proteins with ER-targeted TMs was not affected by ATP13A1 KO (fig. S6). Reexpressing WT ATP13A1, but not D533A ATP13A1, in KO cells restored localization and expression levels of both OMP25 and BAK1 (Fig. 2, D and E, and fig. S5). Thus, ATP13A1 is required for proper mitochondrial TA protein localization.

To confirm that mitochondrial TA protein mislocalization in ATP13A1 KO cells was due to impaired TM removal from the ER rather than altered insertion efficiencies, we assayed the targeting of in vitro—translated (IVT) OMP25 to organelles of semipermeabilized cells over short time periods to minimize downstream processes (fig. S7A). OMP25 localized similarly to mitochondria in both WT and KO semi-permeabilized cells (fig. S7, B and C), indicating that ATP13A1 was not required for initial TA protein targeting. Nonetheless, at steady state, mitochondrial TA proteins were not only mislocalized, but were also apparently depleted from mitochondria in ATP13A1 KO cells (Fig. 2D and figs. S5 and S7C). Because targeting to mitochondria was not affected, we reasoned that this observation may have resulted from other mechanisms. In particular, the AAA-ATPase Msp1 (ATAD1 in humans) can extract TMs from the outer mitochondrial membrane (28, 28, 29). Knocking down ATAD1 in ATP13A1 KO cells significantly restored mitochondrial localization of both BAK1 and OMP25 (fig. S8, A to C). These results support a model in which ATAD1 and ATP13A1 each facilitates TM removal from mitochondria and the ER, respectively, to contribute to TA protein localization at steady state (fig. S8D). Impairing ATP13A1 would result in the ER acting as a “sink” that accumulates misinserted TMs because of the disruption of a major mechanism for removing them. In the absence of ATP13A1, misinserted TA proteins appear to undergo alternative substrate-specific processes that may include vesicular trafficking and lysosomal or ER-associated degradation (11, 30).

Features of ATP13A1-dependent proteins

The observation that reexpressing WT ATP13A1 in KO cells restored mitochondrial TA protein reporter levels suggested that some endogenous proteins that require ATP13A1 function could be identified by quantitative proteomics. To investigate this, we analyzed lysates of WT, ATP13A1 KO, and rescue cells using TMT-MS (fig. S9A and data S2). We identified 34 proteins with decreased abundance in ATP13A1 KO cells, the abundance of which was specifically rescued by acutely reexpressing WT

McKenna et al., Science 369, eabc5809 (2020) 25 September 2020

Downloaded from http://science.sciencemag.org on January 4, 2021
Fig. 2. ATP13A1 mediates TM removal from the ER. (A) Scheme to reconstitute TA protein dislocation from ER-derived RMs. IVT-radiolabeled TA protein is incubated with RMs from WT, ATP13A1 KO, or KO Flp-In T-REx 293 cells stably reexpressing WT or D533A ATP13A1. RMs containing inserted TA protein (tot.) are reisolated and incubated with an energy-regenerating system and the cytosolic TM chaperone SGTA. TA proteins dislocated from RMs are separated by centrifugation (sup.). (B) SDS-PAGE and autoradiography of tot. and extracted (sup.) TA protein containing the OMP25 TM with the indicated RMs. Equal recovery of SGTA (Coomassie) and TA protein cross-links to SGTA (x SGTA) are indicated. (C) As in (B), after cross-linking with 250 μM BMH. (D) IF of endogenous TOM20 (purple; mitochondrial marker) and FLAG-tagged TA protein containing the OMP25 TM (FLAG-β-OMP25; green) stably expressed in (left) WT, ATP13A1 KO, or (right) KO Flp-In T-REx HeLa cells transfected with WT or D533A HA-tagged ATP13A1 (yellow arrowheads, transfected cells; red arrowheads, untransfected cells; also see fig. S5E). Scale bar, 10 μm. Panels below show high-magnification views of boxed regions; intensity of FLAG-β-OMP25 is enhanced in ii, iv, and v. (E) Mean ± SEM and individual MCC values of FLAG-β-OMP25 colocalization with TOM20. ****P < 0.0001. (F) Volcano plot showing relation of the P value and log2 enrichment of proteins in ATP13A1 KO Flp-In T-REx HeLa cells reexpressing WT versus D533A FLAG-ATP13A1. Significantly enriched proteins are classified on the basis of expected cellular localization and TM topology. mito., mitochondrial; N-term., N-terminal; SS, signal sequence; sol., soluble protein after SS cleavage. (G) Mean ± SEM and individual MCC of endogenous OMP25 colocalization with TOM20 in the indicated cells.
ATP13A1, but not D533A ATP13A1 (Fig. 2F and figs. S9B and S10, A to D). Except for one, all of these candidates were mitochondria- or ER-targeted proteins.

Endogenous OMP25 and two additional mitochondrial TA proteins, MAVS and MAOB, were among these candidates, consistent with the decrease in OMP25 reporter levels in ATP13A1 KO cells that was rescued by WT ATP13A1 (fig. S5E). Another identified mitochondrial protein, RMDN3, has a single N-terminal TM that inserts in the N\textsubscript{lumen}/C\textsubscript{cyto} orientation. These candidates all have a TM flanked by a short, positively charged lumenal segment (fig. S10A). Immunofluorescence (IF) verified mislocalization of endogenous OMP25 and RMDN3 in ATP13A1 KO cells, which was specifically rescued by reexpressing WT ATP13A1 (Fig. 2G and fig. S10, E and F).

The remaining ATP13A1-dependent proteins contain an N-terminal ER-targeting signal sequence or type II TM, which should adopt an N\textsubscript{cyto}/C\textsubscript{lumen} topology (fig. S10B) (32). Proteins without an N-terminal hydrophobic helix were not enriched, arguing against a general defect in ER protein maturation. Although highly diverse, signal sequences and type II TMs are generally less hydrophobic than TMs of the opposite topology and often have positively charged N-termini (32). The N-termini of candidate signal sequences also appear enriched in prolines (fig. S10, B and G). These biophysical features resemble mitochondrial TA proteins and raise the possibility that ATP13A1 may mediate the removal of these terminal hydrophobic helices if they are inserted in the wrong orientation (N\textsubscript{lumen}/C\textsubscript{cyto}) (fig. S10, B and H). Together, our data support a QC function for P5A-ATPases in removing misinserted terminal hydrophobic helices from the ER.

Cryo-EM structure of apo Spf1

The P5A-ATPase is an orphan transporter, and our results suggesting a role in TM dislocation were puzzling because P-type ATPases are generally assumed to transport cations or lipids. To understand the substrate selectivity of this family of transporters, we determined the structure of the P5A-ATPase Spf1 from Saccharomyces cerevisiae using single-particle cryo-EM (Fig. 3, A and B, and table S1). We attached a green fluorescent protein (GFP) tag to the 3′ end of the chromosomal SPF1 gene and extracted endogenous Spf1 from yeast membranes with a dodecyl maltoside (DDM)/cholesteryl hemisuccinate (CHS) mixture. Spf1 purified using anti-GFP nanobody affinity resin eluted as a single peak in size-exclusion chromatography (fig. S11, A and B). Cryo-EM images of apo Spf1 purified without any nucleotide or phosphate analogs displayed well-dispersed particles (fig. S11C). Two-dimensional (2D) image classification was used to remove empty micelles and some poor-quality particles (fig. S11, D and E), resulting in 216,994 particles that showed 2D projections of Spf1 from various angles with clear protein features (fig. S11E). Ab initio reconstruction and 3D classification indicated that most Spf1 molecules were in a single conformation (fig. S11D). Approximately 60% of particles from the 2D classification were used to reconstruct the final apo map at 3.5-Å resolution (Fig. 3A, movie S1, and fig. S11, D to G). Many side chains were clearly visible,
enabling de novo building of an atomic model (fig. S12).

The apo Spf1 structure showed all core domains of P-type ATPases, namely the cytosolic A (actuator), P (phosphorylation), and N (nucleotide binding) domains and the T (transport) domain formed by TMs 1 to 6 (Fig. 3, A to C, and fig. S13). In addition, as is common in P2- to P5-type ATPases, Spf1 contains an S (support) domain (TMs 7 to 10) that tightly packs against TM5 and TM6. The structure also showed two features specific to the P5A-ATPase: an N-terminal domain (NTD) preceding the A domain and an “arm-like” elongated domain protruding between the P domain and TM5. The NTD contains a seven-stranded β-barrel in the cytosol, which is tightly bound to the A domain, and two additional TMs (TMa and TMb), which appear to be only loosely associated with TMs 1 and 2 through lipid and/or detergent molecules (fig. S14A). The arm domain extends from the P domain with a conserved α-helix and positions its distal portion upon the detergent micelle (Fig. 3A and fig. S14B). An atomic model for this region could not be built because of poor local resolution, but the micelle around the contact was noticeably pulled up toward the arm domain (fig. S14B), suggesting that the arm domain might affect local membrane structure.

Apo Spf1 has a large inward-open substrate-binding pocket

In all P-type ATPases, the substrate-binding site is formed mainly by TM2, TM4, and TM6 of the T domain at the point where the TM4 helix is disrupted [in Spf1, at the PEP/E/D/LP motif between TM4a and TM4b]. Apo Spf1 also shows a prominent pocket for substrate binding in this site, but with an unusually large V-shaped cavity compared with other P-type ATPases (Fig. 3D and fig. S15). The pocket is blocked on the ER luminal side and open toward the cytosol. Thus, the apo structure represents an inward-open conformation of the transporter. The inner surface is lined with a mixture of hydrophilic and hydrophobic side chains (fig. S15, A and C) and exhibits negative electrostatic potential (fig. S16A) that is contributed collectively by D215, E232, D434, E446, and E450. These acidic amino acids are highly conserved in P5A-ATPases across species but not in the closest subfamily of P5B-ATPases (fig. S16B).

One noticeable feature of the putative substrate-binding pocket is that it is open both to the cytosol and laterally toward the lipid phase in the cytosolic leaflet of the ER membrane between TM2 and TM6 (Fig. 3D and fig. S15A). In P2-ATPase cation pumps, such as the sarcoplasmic/endoplasmic reticulum Ca\(^{2+}\)-ATPase (SERCA) and Na\(^+\)K\(^{-}\)-ATPase, the T domain forms a small ion-binding cavity that is shielded away from the membrane (33–37). In P4-ATPase lipid flippases, the equivalent pocket, which is also small and binds to a phospholipid head group, is exposed only to the lipid phase (38–40). The unusual size and topology of the substrate pocket suggests that the P5A-ATPase has fundamentally different substrate specificities than other P-type ATPases with known structures. The structure did not reveal any sites in the pocket of Spf1 that could specifically coordinate a metal ion, arguing against the idea that the P5A-ATPase transports cations (10, 18).

Structure of Spf1 in an outward-open conformation

P-type ATPases undergo a series of conformational changes with ATP binding, phosphorylation of a conserved aspartate (D487 in Spf1, D533 in ATP13A1), and subsequent dephosphorylation in a scheme known as the Post-Albers cycle (i.e., E1 → E1-ATP → E1-ADP → E1 → E2-P → E2-Pi → E1; fig. S17A). Transitions between the E1 and E2 states result in large conformational changes in the T domain that mediate substrate transport. Because the apo structure of Spf1 represents only the E1 form, we sought to elucidate different conformational states by adding nucleotide or phosphate analogs to purified Spf1. To this end, we obtained structures of Spf1 in complex with β,γ-methyleneadenosine 5′-triphosphate (AMP-PCP), BeF\(_3\), and BeF\(_3\) at overall resolutions of 3.7, 3.4, and 3.3 Å, respectively (fig. S18). AMP-PCP, a nonhydrolyzable ATP analog, locks the enzyme in an ATP-bound state, and the phosphate analogs AlF\(_3\) and BeF\(_3\) form a stable complex with the side-chain carboxylate of D487 to mimic a phosphorylated aspartate (37). All three structures show clear EM density for these inhibitors bound at the phosphorylation site (fig. S19, A to C). On the basis of the arrangement of the A, P, and N domains and comparison with other P-type ATPase structures (37, 39), we assigned the AMP-PCP, AlF\(_3\), and BeF\(_3\) structures as the E1-ATP, E1P, and E2P states, respectively. The AMP-PCP– or AlF\(_3\)-bound Spf1 structures were essentially identical to the apo structure (root mean square deviations of 0.56 and 0.48 Å, respectively; fig. S19, D and E). Only a slight (7°) inward rotation was seen with the N domain of AMP-PCP–bound Spf1 as AMP-PCP bridges the interface of the N and P domains. The T domain maintained the inward-open conformation in both the AMP-PCP– and AlF\(_3\)-bound structures.

By contrast, the BeF\(_3\)-bound E2P structure showed a substantially different conformation (Fig. 4, A and B; movie S2; and fig. S19, F and G). Similar to other P-type ATPases, the N domain of Spf1 undergoes a large (~50°) outward rotation with respect to the P domain during the E1P to E2P transition. This allows the A domain, which contains a conserved (S/T)GES motif for dephosphorylation, to access the phosphorylation site through an ~24° inward rotation of the A domain and NTD toward the N-P interface. Because TM1 and TM2 are linked to the A domain, this motion substantially restructures the substrate-binding pocket. TM2 and TM6, which contact each other on the ER luminal side in a V-shaped arrangement in the E1 states, spread out into a parallel arrangement, and the cytosolic segment of TM4 (denoted TM4b) moves in between TM2 and TM6 toward the lipid phase by a tilting motion (Fig. 4D and movie S3). Consequently, the inward-open V-shaped substrate pocket transforms into an outward-open, inverted U-shaped pocket (Fig. 4C and D, and fig. S15B). During this E1 to E2 transition, the lateral opening to the lipid phase is maintained but shifts from the cytosolic to the luminal leaflet of the ER membrane (movie S3). The surface of the pocket maintains a negative electrostatic potential (Fig. 4C), suggesting that substrates likely contain positive charges in addition to a hydrophobic component, which would interact with the acyl chains of lipids at the lateral opening. These features are consistent with the TMs of mitochondrial TA proteins and the terminal hydrophobic helices of ATP13A1-dependent proteins identified in our proteomics analyses (fig. 2F).

Visualization of a putative Spf1 substrate

Finally, we sought to visualize substrate-engaged Spf1. Although we did not observe substrate density in the structures obtained with Spf1 purified as described above, we reasoned that endogenous substrates may copurify with Spf1 trapped in the outward-open E2P conformation. Accordingly, we repeated the extraction and purification of Spf1 with BeF\(_3\) included in all buffers. The resulting 3.3-Å-resolution structure (fig. S18, J to L, P) was essentially identical to the E2P structure but with a prominent difference: an additional elongated density of a putative substrate traversing the lateral opening of the substrate pocket (Fig. 4E and fig. S20A).

The putative substrate density spans almost the entire membrane and closely resembles an α-helical TM that can accommodate a 20-residue-long polyalanine model (Fig. 4, E and F). The large cylindrical shape is incompatible with detergents, lipids, and steroids (fig. S20B). In the cytosolic leaflet of the membrane, the density is exposed to the lipid phase and may interact with hydrophobic amino acids of TM2 (P223, M227, M231), TM4b (M449, M453), and the conserved PEP/E/D/LP motif (P446) between TM4a and TM4b. In the luminal leaflet, the density is directed to the inverted U-shaped pocket. This density likely represents an average of multiple different copurified substrates, possibly explaining the lower resolution compared with Spf1. Altogether,
our structural and functional data indicate that the P5A-ATPase dislocate misinserted TMs from the ER membrane.

Discussion

Our results assign transmembrane helices as the substrates of the ER-resident P5A-ATPase, thereby defining an additional P-type ATPase function of transporting polypeptides out of lipid bilayers. Until recently, P-type ATPases were thought to be exclusively cation or lipid pumps. Together with the report that the P5B-ATPase ATP3A2 transports polyamines (8), our study reveals that P-type ATPases mediate transport of unexpectedly diverse substrates. Although the T domains of all P-type ATPases display a similar overall arrangement of TMs 1 to 6, our structures demonstrate that they can form fundamentally different substrate-binding sites. The large substrate-binding pocket of Spf1, with an opening that not only alternately faces the cytosol and the ER lumen but also remains laterally accessible from the membrane, is distinctive among P-type ATPases characterized to date. We propose that the P5A-ATPase uses this specialized pocket to extract mistargeted or misinserted TMs with a short flanking lumenal hydrophilic segment from the ER (Fig. 5). In this working model, we hypothesize that the substrate TM largely remains in the lipid phase, whereas the lumenal segment is flipped across the membrane by the outward-to-inward-open transition of the large cavity in the T domain. Moderate hydrophobicity and hydrophilic characteristics of signal sequences and mitochondrial TMs may lower the energetic barrier for dislocation. Positive charges in the lumenal segment may be the preferred clients, whereas large lumenal segments are likely excluded because of the limited space in the pocket.

TM dislocation by the P5A-ATPase also reveals a previously unidentified protein QC and safeguarding mechanism at the ER. Active transport by the P5A-ATPase is required to dislocate mitochondrial TMs that mistarget to the ER. P5A-ATPase function at the ER appears similar to Msp1 at the outer mitochondrial membrane; although structurally unrelated, both use ATP as an energy source to dislocate TMs, possibly providing opportunities for reinsertion into the correct membrane. This idea is consistent with emerging observations that ER and mitochondrial factors cooperate to degrade aberrant TM-containing proteins (11, 30) and to ensure high-fidelity mitochondrial protein import, as in the ‘ER-SURF’ pathway (41).

The P5A-ATPase may also dislocate ER-targeted N-terminal hydrophobic helices such as signal sequences that erroneously insert in the Nlumen/Ccyto orientation (41), and to ensure high-fidelity mitochondrial protein import, as in the ‘ER-SURF’ pathway (41).

Our results assign transmembrane helices as the substrates of the ER-resident P5A-ATPase, thereby defining an additional P-type ATPase function of transporting polypeptides out of lipid bilayers. Until recently, P-type ATPases were thought to be exclusively cation or lipid pumps. Together with the report that the P5B-ATPase ATP3A2 transports polyamines (8), our study reveals that P-type ATPases mediate transport of unexpectedly diverse substrates. Although the T domains of all P-type ATPases display a similar overall arrangement of TMs 1 to 6, our structures demonstrate that they can form fundamentally different substrate-binding sites. The large substrate-binding pocket of Spf1, with an opening that not only alternately faces the cytosol and the ER lumen but also remains laterally accessible from the membrane, is distinctive among P-type ATPases characterized to date. We propose that the P5A-ATPase uses this specialized pocket to extract mistargeted or misinserted TMs with a short flanking lumenal hydrophilic segment from the ER (Fig. 5). In this working model, we hypothesize that the substrate TM largely remains in the lipid phase, whereas the lumenal segment is flipped across the membrane by the outward-to-inward-open transition of the large cavity in the T domain. Moderate hydrophobicity and hydrophilic characteristics of signal sequences and mitochondrial TMs may lower the energetic barrier for dislocation. Positive charges in the lumenal segment may be the preferred clients, whereas large lumenal segments are likely excluded because of the limited space in the pocket.

TM dislocation by the P5A-ATPase also reveals a previously unidentified protein QC and safeguarding mechanism at the ER. Active transport by the P5A-ATPase is required to dislocate mitochondrial TMs that mistarget to the ER. P5A-ATPase function at the ER appears similar to Msp1 at the outer mitochondrial membrane; although structurally unrelated, both use ATP as an energy source to dislocate TMs, possibly providing opportunities for reinsertion into the correct membrane. This idea is consistent with emerging observations that ER and mitochondrial factors cooperate to degrade aberrant TM-containing proteins (11, 30) and to ensure high-fidelity mitochondrial protein import, as in the ‘ER-SURF’ pathway (41).
Fig. 5. Proposed model for TM dislocation by the P5A-ATPase. The P5A-ATPase likely alternates between two conformations, inward-open E1 and outward-open E2 states. During the E1P-to-E2P transition, the N domain rotates (red) and the A domain (yellow) moves closer to the N-P interface, causing conversion of the inward-open substrate-binding pocket of the transmembrane domain (brown and tan) to the outward-open conformation. In this model, a substrate TM helix (magenta) with a short, preferentially positively charged luminal segment would bind to the outward-open pocket and the E2P-to-E1 transition would flip the TM by a switch from the outward-open to inward-open conformation. For simplicity, some intermediate steps of the Post-Albers cycle are not shown.

Materials and Methods
Plasmids and antibodies
To express recombinant TA protein in complex with CaM (fig. S1A), the open reading frame of a model TA protein containing the cytosolic domain of SEC61β and OMP25 TM as described in (44) was appended after a 3C protease cleavage site to the coding sequence of pGEX-CaM (29). N-terminal FLAG tags and amider codons were introduced using conventional molecular biology techniques, pGEX-SGTA (24), pEVOL-Bpa for expressing amber codon suppression components in bacteria (46), and plasmids for expressing recombinant Bpa-RS and for suppressor tRNA transcription (46) have been described previously.

SP64-based plasmids used to generate in vitro transcription templates were as previously described (47). TM substitutions and introduction of amber stop codons for Bpa incorporation (e.g., Fig. 1E) were accomplished using conventional Gibson assembly and Phusion mutagenesis approaches. Model TA protein-coding sequences were transferred to pcDNA5/FRT/TO vectors for stable incorporation into Flp-In T-REx HeLa cells (a gift from B. Raught) behind a doxycycline-inducible cytomegalovirus (CMV) promoter (e.g., Fig. 2, D and E). TM sequences were exchanged using Gibson assembly.

ATP13A1 cDNA (Harvard plasmID no. HsCD000288272) was cloned into pcDNA5/FRT/TO behind an N-terminal 3xFLAG tag by restriction enzyme digestion and Gibson assembly. Sequence encoding the N-terminal 132 amino acids of ATP13A1 not present in the cDNA construct and the D533A mutations was introduced by Gibson assembly. To modulate induced expression levels (fig. S9A), the Promega-series CMVdl truncation was generated in pcDNA5/FRT/TO expression vectors using conventional molecular biology techniques. ATP13A1 coding sequences were transferred from pcDNA5 to pcDNA3.1-based vectors behind 3xFLAG and 3xHA tags for transient transfection (e.g., Fig. 2D) by restriction enzyme digestion and T4 ligation. pOG44 (Thermo Fisher Scientific V800520) and pX459 (48) are as described previously. Guide RNA sequences (GAG CAC CGT CCC ATA CCC GG, ACG GCC TCA CTG TCC TCT CG) were cloned into pX459 for generating KO cells using Gibson assembly.

Homemade rabbit polyclonal antibodies against TRAPα (1:5000 for immunoblotting (IB); 1:3000 for IF), GFP (1:5000 for IB), and OMP25 (1:1000 for IB; 1:300 for IF) were gifts from the Hegde laboratory. Antibodies against TOM20 (Abcam ab186735) (1:5000 for IB; 1:3000 for IF), TOM20 (Santa Cruz Biotechnology sc-17764; RRID: AB_2628381; 1:50 for IF), ATP13A1 (Protein- tech 16244-1-AP; RRID: AB_2290293; 1:5000 for IB), FLAG M2 (Sigma-Aldrich F1804; 1:1000 for IB; 1:1000 for IF), CNX (Enzo Life Sciences ADI-SPA-865; RRID: AB_10618434; 1:5000 for IB), Por1 (Abcam ab10326; RRID: AB_10865182; 1:2500 for IB), ATAD1 (Abcam ab94583; RRID: AB_10672816; 1:1000 for IB), DNAJB1 (Protein-tech 15484-1-AP; RRID: AB_2049440; 1:2500 for IB), MAVS (Cell Signaling Technology 3993; RRID: AB_823565; 1:1000 for IB), OMP25 (Abcam ab224217; 1:50 for IF; OMP25 (Protein-tech 15666-1-AP; RRID: AB_220149; 1:1000 for IB); RMDN3 (Thermo Fisher Scientific PA-52680; RRID: AB_2646594; 1:1000 for IB; 1:100 for IF) are commercially available. For immunoblotting, horseradish peroxidase-conjugated anti-mouse (Jackson ImmunoResearch Laboratories 115-035-003; RRID: AB_10015289) and anti-rabbit (Jackson ImmunoResearch Laboratories 111-035-003; RRID: AB_2313567) antibodies were used at 1:5000. For IF, Alexa Fluor 488–conjugated goat anti-mouse IgG (Jackson ImmunoResearch Laboratories 115-545-003; RRID: AB_2338840), Alexa Fluor 564–conjugated goat anti-rabbit IgG secondary antibodies (Jackson ImmunoResearch Laboratories 111-585-003; RRID: AB_2338059), and DyLight 680–conjugated anti-hemagglutinin (HA) antibody (Thermo Fisher Scientific 26183-D680; RRID: AB_2533054) are commercially available.

Yeast strains
BY4741 and Spf1-GFP (e.g., Fig. 1D) yeast strains used for membrane preparations and cross-linking analyses (Fig. 1 and fig. S1) were obtained from the Finley laboratory (Harvard Medical School). To tag endogenous Spf1 with a 3xFLAG tag (e.g., Fig. 1E), a DNA fragment containing coding sequence for a linker (GSGGIRPGLINM) 3xFLAG, and a hygromycin resistance marker flanked by 50 to 60 bp homologous to the 3’ regions of SPF1, was generated by polymerase chain reaction (PCR) using the pFA6a-3xFLAG-Hyg plasmid (a gift from P. Feng, Harvard Medical School) as a template and a pair of primers (forward: 5’-caca cc ate aga cat ttc tgt gca aca gat tgc tct taa agg att agg agg agc GAT CCC GGT AAT TAA-3’; reverse: 5’-gga tgt tat aat aat aca aag aag agg act gac tag CCG GTT AAT CTA AAC-3’; lowerase and uppercase, specific to the chromosomal and template sequences, respectively). DNA was introduced to BY4741 by a standard lithium acetate transformation protocol before selection with 100 μg/ml hygromycin in yeast extract, peptone, and dextrose (YPD) agar. SUCCESSFUL FLAG tagging and protein size was confirmed by immunoblotting and Sanger sequencing.

To enable affinity purification of endogenous Spf1 from S. cerevisiae, a cleavable GFP tag was introduced to the 3’ end of the SPF1-coding sequence of the WT strain BY4741. First, a DNA fragment containing a coding sequence for GFP and a nourseothricin resistance marker, which is flanked by ~60-bp sequences homologous to the 3’ regions of SPF1, was generated by PCR using the pSK-B399 plasmid (a gift from S. Klinge, Rockefeller University) as a template and a pair of primers (forward: 5’-ctt atc gac gag aca cca taa gag att tct gtt cca cag gtc aag tcc att aaag GGA GCA ACT GGT GCT AG-3’; reverse: 5’-a ctg aga tgg tgt tt ttt aca aat aca gca ctt tca taa aat aac aat aca ccc CGG CTG TAT CAG GTA CAG-3’; lowercase and uppercase, specific to the chromosomal and template sequences, respectively).
The DNA segment also contains a 31-amino-acid-long protease-cleavable linker [GAT-GGSTAGGATTASGTG ENLYFGG TASGGG; underlined], a Tobacco etch virus (TEV) protease cleavage site] between the last codon of SFP1 and the first codon of GFP. DNA was then introduced into BY4741 by a standard lithium acetate transformation protocol. Transformants were isolated from a YPD agar medium (1% yeast extract, 2% peptone, 2% glucose, and 2% Bacto Agar) containing 100 μg/ml nourseothricin. Correct chromosomal integration was confirmed by PCR and Sanger sequencing.

Protein purification for biochemical assays

To purify TA(Bpa) in complex with CaM, BL21(DE3) cells were cotransformed with pGEX-CaM-FLAG-OMP25(amb) and pEVOL-Bpa and grown in Luria broth under appropriate antibiotic selection to an optical density 600 nm (OD600) of 0.6. The cultures were then supplemented with 1 mM Bpa (Bachem 407646) and induced with 1% arabinose and 0.2 mM isopropyl-β-D-thiogalactoside for 6 hours at 25°C. Cells were harvested and resuspended in ice-cold lysis buffer [1x phosphate-buffered saline (PBS), 0.5 mM CaCl2, 1 mM dithiothreitol (DTT), 1x protease inhibitor cocktail (PIC); Sigma-Aldrich 5056489001] and lysed by passing through a microfluidizer two times. Soluble material after centrifugation at 34,541 g for 20 min in a SS34 rotor (Sorvall) was applied to 1 ml of packed glutathione Sepharose (GE Life Sciences 17075601) resin equilibrated in lysis buffer per liter of culture. Columns were washed with 10 columns of volume of lysis buffer and eluted with 50 mM Tris (pH 8), 25 mM reduced glutathione, and 0.5 mM CaCl2. Peak elution fractions were pooled and dialyzed against 50 mM Hepes (pH 7.4), 150 mM KCl, 2 mM Mg(OAc)2, 14% glycerol, 1 mM DTT, 1x PIC, adjusted to ~50 mg/ml protein, aliquoted, and stored in liquid nitrogen. Note that all membrane fractions showed cross-linking to Spf1 caused by residual ER contamination in the mitochondrial-enriched membrane fractions.

Photo-cross-linking of recombinant TA with yeast membranes

Reactions were performed in import buffer [50 mM Hepes (pH 7.5), 100 mM KOAc, 2.5 mM Mg(OAc)2, 0.5 mM CaCl2] containing 7.5 to 20 μg/ml FLAG-TA(Bpa) in complex with CaM and 5 mg/ml mitochondria-enriched membranes. FLAG-TA(Bpa) was released from CaM by addition of 2 mM EGTA, and the samples were transferred to a prechilled 96-wel plate ~10 cm under a UVP B-100 series lamp for 10 min. Ten volumes of IP buffer [50 mM Hepes (pH 7.5), 100 mM KOAc, 2.5 mM Mg(OAc)2, 1% Triton X-100, 1x PIC] were added to each well, and the samples were incubated on ice for 10 min to solubilize membranes and centrifuged at 21,000g for 5 min. The supernatant was added to M2 anti-FLAG affinity resin (Sigma-Aldrich A2220) and mixed at 4°C for 2 hours. M2 FLAG beads were washed twice with IP buffer, twice with IP buffer + 0.5 M NaCl, and another two times with IP buffer. Elutions were performed with 0.15 mg/ml 3x FLAG peptide in IP buffer at 30°C for 20 min. Samples for TMT-MS analysis were treated with 10 mM DTT at 55°C for 30 min, followed by 50 mM chloroacetamide at 25°C in the dark for 20 min. For immuno blotting, elutions were precipitated by the addition of one-fifth the elution volume of trichloroacetic acid, incubated on ice for 15 min, and centrifuged at 21,000g for 1 min. The pellet was washed twice with ice-cold acetone and resuspended in protein sample buffer.

Generation of KO and stable inducible cell lines

All cell lines were maintained in Dulbecco’s modified Eagle’s medium (DMEM) with high glucose, Glutamax, and sodium pyruvate (Thermo Fisher 10569) with 10% fetal bovine serum (FBS) at 37°C and 5% CO2. Parent HEK293T, Flp-In T-REx 293, and HeLa T-REx cell lines were authenticated by short tandem repeat analysis. ATP13A1 KO cell lines were generated by transfecting Flp-In T-REx HeLa (Fig. 2D and figs. S5 to S9) or Flp-In T-REX 293 (Fig. 2A, and figs. S3 and S4) cells with pX459 plasmids containing target guide RNAs using Lipofectamine 2000 or TransIT293 (Mirus Bio), respectively, according to the manufacturer’s instructions. After 24 hours, transfected cells were selected with 2 mg/ml puromycin for 48 hours. Single clones were isolated and KOs validated by immuno blotting and amplicon sequencing.

To establish stable doxycycline-inducible cell lines expressing either FLAG-tagged tail-anchored proteins or FLAG-tagged ATP13A1, WT or ATP13A1 KO Flp-In T-REx HeLa or 293 cells were cotransfected with a 1:1 ratio of pOG44 and pcDNA5/FRT/TO vector containing the desired insert using Lipofectamine 2000/Lipofectamine 3000 or TransIT293 (Mirus Bio), respectively. After 24 hours, cells were selected with 10 μg/ml blasticidin and 150 to 300 μg/ml hygromycin for at least 2 weeks, and expression was validated by induction with 10 ng/ml doxycycline for 24 to 48 hours and immuno blotting.

Isolation of RMs

RMs were isolated from WT, ATP13A1 KO, and ATP13A1 KO Flp-In T-REx 293 cells stably re-expressing FLAG-tagged WT or D533A ATP13A1 essentially as described previously (42). Cells were cultured for at least two passages in antibiotic-free medium. Reexpression of approximately endogenous levels of FLAG-ATP13A1 in the rescue lines (fig. S3A) was achieved by trace levels of tetracycline present in the PBS in the culture medium, and no additional doxycycline was added. Cells were harvested and washed twice in cold PBS and centrifuged at 500g for 5 min. The cell pellet was resuspended in three volumes of 10 mM Hepes (pH 7.4), 250 mM sucrose, 2 mM MgCl2, and 1x PIC, and lysed by 25 to 30 passages through a 27-gauge needle. Lysates were centrifuged twice at 3800g for 30 min, and the supernatant was centrifuged at 75,000g for 1 hour at 4°C in a TLA-55 or TLA-100.3 rotor. The RM pellet was resuspended in 10 mM Hepes (pH 7.4), 250 mM sucrose, 1 mM MgCl2, 0.5 mM DTT, and normalized to an

McKenna et al., Science 369, eabc5809 (2020) 25 September 2020
photo-cross-linking

KOAc, 2.5 mM Mg(OAc)2] were placed 10 cm from the VSb (50 mM Hepes (pH 7.5), 100 mM NaCl) and incubated on ice for 25 min, followed by centrifugation at 250,000 × g for 30 min in a TLA100.3 rotor. Pellets were directly resuspended in protein sample buffer for SDS-PAGE and autoradiography analysis. For analysis of insertion efficiency (fig. S3, B and C) and extraction reactions (fig. 2, B and C, and fig. S4), RMs were pelleted by centrifugation on a four reaction volumes of a 20% sucrose cushion in PSB at 186,000 × g for 20 min at 4°C in a TLA-55 rotor and resuspended in half the initial reaction volume of PSB. Extraction reactions contained ~20 mg/ml RMs (estimated on the basis of total protein concentration), 1 mg/ml SGTA, and either an energy-regenerating system (1 mM ATP, 1 mM GTP, 1.2 mM creatine phosphate, 20 mg/ml creatine kinase) or 1 mM ATP, 1 mM AMP-PCP, or 0.1 U/μl asparagine as indicated, and were incubated at 32°C for 30 min. Samples were directly analyzed before or after centrifugation over a 20% sucrose cushion at 186,000 × g for 30 min. Chemical cross-linking (Fig. 2C) was with 250 μM BMH (Thermo Fisher Scientific 22330) at 4°C for 1 hour and directly quenched with protein sample buffer.

IF assays

Flp-In T-Rex HeLa cells were cultured either on 13-mm coverslips or in glass-bottomed 24- or 48-well plates (Mattek). For assays with cells lines harboring inducible substrates (Fig. 2D and figs. S5 to S8) and analysis of endogenous substrates (Fig. 2G and fig. S10, E and F), TA protein or Flag-ATP13A1 expression was induced with 100 ng/ml doxycycline for 24 hours. For rescue assays with stable reporters, cells in a 24-well glass-bottomed plate were transiently transfected with 200 ng of pcDNA3 containing HA-tagged WT or D533A ATP13A1 using Lipofectamine 3000 according to the manufacturer's instructions 48 hours before analysis. For targeting assays (fig. S7), Flp-In T-Rex HeLa cells in a 48-well glass-bottomed dish were washed twice with PSB and incubated with 200 μg/ml digitonin in PSB for 10 min at 4°C. The cells were washed once with PSB before being incubated with 25 μl of a 5× in vitro translation reaction mixture of FLAG-β-OMP25 at 32°C for 15 min.

For imaging, all cells were washed twice in PBS and fixed in 4% formaldehyde in PBS for 15 min. Cells were washed once in PBS, permeabilized with 0.1% Triton X-100 in PBS for 5 min, and then incubated at room temperature with blocking solution (10% FBS in PBS) for 1 hour, followed by primary antibodies in 10% FBS/PBS 1 hour. After three washes in PBS, cells were incubated with 1:500 fluorophore-conjugated secondary antibodies in 10% FBS/PBS for 1 hour and washed three times in PBS before imaging. For ATP13A1 transfection rescue experiments, cells were incubated with 1:100 DyLight 680-conjugated anti-HA antibody (Thermo Fisher Scientific 26183-D680) in 10% FBS/PBS for 1 hour at room temperature or overnight at 4°C and washed three times with PBS. Next, 13 mm coverslips were placed onto SlowFade Gold Antifade Mountant (Thermo Fisher Scientific S36936) and sealed using nail polish. Cells in 24- or 48-well plates were imaged directly in PBS.

All images were collected with a Yokagawa CSU-X1 spinning-disk confocal microscope with Spectral Applied Research Aurora Borealis modification on a Nikon Ti motorized inverted microscope equipped with Plan Apo 100×/1.4 numerical aperture oil-immersion objective. Fluorescence was excited with solid-state lasers at 488 nm (100 mW), 561 nm (100 mW), and 642 nm (100 mW) and collected using ET525/50m, ET620/50m, or ET700/75m emission filters, respectively. Images were acquired with a Hamamatsu ORCA-ER cooled CCD camera. Z-series optical sections were collected with a step size of 0.5 μm and single sections were selected from approximately the center of the cell. Brightness and contrast were adjusted identically for compared image sets using Fiji software.

Background subtraction of IF images was performed using the robust Otsu thresholding method (49). A region of interest (ROI) was drawn around each cell in the FLG channel, and colocalization was assessed in 3D using the ImageJ Color2 plugin with a point spread function of 2 and 25 randomizations. Manders’ colocalization coefficients (MCCs) (50) (e.g., Fig. 2E) indicate the correlation of FLAG signal above 0 that overlaps with mitochondria normalized to the total FLAG signal within the ROI. Pearson’s correlation coefficients (PCCs) are shown for correlation of FLAG signal with the signal of the ER marker TRAP51 (fig. S6) because of the influence of unreliable thresholding of the diffuse ER signal on MCC values. Nonetheless, both MCC1 and MCC2 values with various thresholding techniques support the trends shown in fig. S6, where SEC61β is unaffected, but mitochondrial TA protein colocalization with the ER marker increases in ATP13A1 KO cells. For rescue experiments by transient
transfection (Fig. 2, D and E, and fig. S5, A and B). HA staining was used to identify transfected cells; nontransfected cells were not analyzed. The numbers of cells and fields of view (in parentheses) analyzed were as follows: Fig. 2E, OMP25 WT, n = 14 cells (4 fields of view), KO, n = 14 (3), KO + WT, n = 17 (5), KO + D333A, n = 16 (4); fig. S5, BAK1 WT, n = 18 (5), KO, n = 18 (6), KO + WT, n = 35 (10), KO + D333A, n = 22 (9); fig. S6, SEC61β WT, n = 10 (3), SEC61β KO, n = 9 (3), BAK1 WT, n = 8 (3), BAK1 KO, n = 12 (3), OMP25 WT, n = 9 (3), OMP25 KO, n = 7 (3); fig. S8, BAK1 WT cont., n = 16 (3), WT KD, n = 15 (5), KO cont., n = 25 (5), KO KD, n = 47 (10); fig. S8C, OMP25 WT cont., n = 11 (3), WT KD, n = 15 (3), KO cont., n = 14 (4), KO KD, n = 44 (10); Fig. 2G, endogenous OMP25 WT, n = 32 (10), KO, n = 32 (10), KO + WT, n = 19 (8), KO + D333A, n = 32 (10); and fig. S10F, endogenous OMP25 WT, n = 32 (10), KO, n = 25 (7), KO + WT, n = 23 (10), KO + D333A, n = 25 (8).

To compare the level of IVT or stably expressed tail-anchored protein localized to mitochondria (fig. S7C), FLAG signal within mitochondrial ROIs was quantified from five (fig. S7C), BAK1 WT, n = 32 (10), BAK1 KO, n = 32 (10), KO + WT, n = 14 (3), KO + D333A, n = 14 (3), KO + WT, n = 17 (5), KO + D333A, n = 18 (6), and KO + D333A, n = 25 (10).

Classification of candidates identified by quantitative proteomics was initially analyzed in a TLS-55 rotor followed by manually collecting centrifugation at 55,000 rpm for 2 hours 25 min. McKenna et al., Science 369, eabc5809 (2020) 25 September 2020

Miscellaneous biochemistry and analyses

SDS-PAGE was with 8%, 10%, or 12% Tris-tricine polyacrylamide gels with the Bio-Rad mini-gel electrophoresis system. Transfers to 0.2 μm nitrocellulose membranes and immunoblotting were performed using conventional techniques in 5% milk or BSA in PBS + 0.1% Tween and imaged on a Bio-Rad ChemiDoc Touch or by exposure to XAR film. Transfers in 25 mM potassium phosphate (fig. SIC) were at 15 V for 12 hours at 4°C. For autoradiography, gels were dried on filter paper before phosphor imaging or exposure to MR film. Quantification of autoradiography signal was done using phosphor imaging and ImageQuant software (GE Healthcare) or by scanning film and with ImageJ software (NIH). Native size fractionations on 200-μl 5 to 25% sucrose gradients (fig. SIA) were performed by centrifugation at 55,000 rpm for 2 hours 25 min in a TLS-55 rotor followed by manually collecting 11 fractions as described previously (24, 52).

Classification of candidates identified by quantitative proteomics was initially analyzed by Gene Ontology (GO) enrichment terms and then by manually curating specific annotations in UniProt. Signal sequences were retrieved from UniProt or, for unclearly annotated candidates, predicted using SignalP-5.0. Experimentally validated eukaryotic signal sequences were extracted from SPdb (83), and proline content within the first 10 amino acids (fig. SIOG) was analyzed using the Biostrings R package and R scripts. RNA extraction and quantitative real-time reverse transcription–PCR analyses (fig. S10D) were performed by Syd Labs, Inc. from frozen cell pellets using the following primers: MAVS forward, Cat GCT GGG CAG CTC AGT TA; MAVS reverse, TAA CAG CTA CCC TGG AAC GG; OMP25 forward, ACC CTC CAC CCC TGC TAT TC; OMP25 reverse, GGT TTG GGG TGG GTA TCA; ATP13A1 forward, GTT CGG CTT CAT TGT GG; ATP13A1 reverse, TGG GAC GCA TTC TGC ATC TC; SRP14 forward, ATT GGT CTC TGC TGC ATG GT; and SRP14 reverse, TGG GTT GGA AAA GGA ATA AAG AG. SRP14 and ATP13A1 were used as normalization and positive controls.

Purification of S. cerevisiae Spf1 for cryo-EM analysis

Yeast cells, in which endogenous Spf1 is tagged with C-terminal TEV-GFP, were grown in YPD medium (1% yeast extract, 2% peptone, and 2% glucose) in shaker flasks at 30°C to an OD₅₆₀ of 0.5 when centrifuged, frozen in liquid nitrogen, and stored at −80°C until use. Cells were lysed by cryomilling and resuspended in buffer containing 50 mM Tris (pH 7.5), 200 mM NaCl, 1 mM EDTA, 1 mM DTT, 10% glycerol, 5 μg/ml aprotinin, 5 μg/ml leupeptin, 1 μg/ml pepstatin A, and 2 mM PMSF. The membranes were then solubilized with 1% DDM and 0.2% CHS for 2.5 hours. After centrifugation, the lysate was incubated with anti-GFP nanobeads for 3 hours. The beads were then washed with ~30 column volumes of buffer W additionally containing 10 mM MgCl₂ and 2 mM BeF₃. After eluting with the TEV protease, purified Spf1 was injected into a Superox 6 column equilibrated with the same wash buffer. Peak fractions were pooled, concentrated to ~5 mg/ml, and immediately used for cryo-EM grid preparation.

Cryo-EM grid preparation and data acquisition

To prepare cryo-EM grids, gold Quantifoil R 1.2/1.3 Holey Carbon Grids were treated with glow discharge for 35 s using a PELCO easiGlow system (0.39 M Bar air, 25 mA). Then, 3 μl of the Spf1 sample was applied to a grid. The grid was blotted for 2 to 3 s with grade 1 Whatman filter paper and plunge-frozen in liquid nitrogen–cooled liquid ethane using Vitrobot Mark IV (FEI) operated at 4°C and 100% humidity.

The apo and AIF₃ datasets were collected on a Talos Arctica electron microscope (FEI) operated at an acceleration voltage of 200 kV, and the other datasets were collected on a Titan Krios electron microscope (FEI) operated at an acceleration voltage of 300 kV and equipped with a Gatan GIF Quantum LS image filter (a slit width of 20 eV) (table S1). Dose-fractionated images (~50 to 60 electrons per Å² over 42 frames) were recorded on a K3 direct electron detector (Gatan) operated in the superresolution mode using SerialEM software (54). The physical pixel size was 1.14 Å for apo, 0.90 Å for AIF₃, and 1.19 Å for the other datasets. Target defocus values were from −10 to −2.4 μm.

Cryo-EM structure determination

The single-particle analysis procedures are described in figs. S1D and S17, B and C, and table S1. First, tile-based motion correction of movies (using 7 by 5 tiles), contrast transfer function (CTF) estimation, and automatic particle picking were performed using Warp (55). During this process, the corrected movies were 2× frame binned by averaging each two frames, resulting in a total of 21 frames per movie. Micrographs that were not suitable for image analysis (mostly those containing crystalline ice) were removed by manual inspection. All subsequent image processing was performed using cryoSPARC v2 (56) with the particles and 2×-binned movies imported from Warp.
Except for the substrate-bound Spf1 dataset, the particles were polished by per-particle motion correction on the 2x-binned movies (57). The dimensions of extracted particle images were 256 pixels (320 pixels for the AlF4 dataset). The particle images were then subjected to reference-free 2D classification. Most particles discarded by the 2D classification were empty detergent micelle particles. For the AlF4 and BeF3 datasets, the first 2D classification was performed before the particle polishing and another 2D classification after the polishing.

These particles were used for generation of three (for apo, AMP-PCP, and AlF4) or five (for BeF3 and substrate-bound Spf1) initial models (ab initio reconstruction), followed by one or two rounds of 3D classification (heterogeneous refinement). For the apo, AMP-PCP, and AlF4 datasets, only one class (containing ~55 to 80% particles from the 2D classification) showed features of Spf1, which was used for 3D refinement. In the case of the BeF3 dataset (without substrate), a minor class of the apo-like inward-open structure (23% particles) in addition to the major class of the outward-open structure (57% particles) was found in the 3D classification. In the case of the substrate-bound structure, three out of five classes (total 87% particles) showed equally clear Spf1 features with the outward-open conformation, whereas the two other minor classes showed little or no protein densities. All three good classes also showed a clear additional TM helix-like density of a putative endogenous substrate. Because substrate occupancy is likely partial, we subjected particles to a second round of 3D classification using two reference models, one of the three substrate-bound classes containing the substrate density and a class without a substrate (from the outward-open BeF3-bound structure without a substrate). This resulted in two classes with a stronger (class A) and weaker (class B) substrate density, and particles from class A were used for 3D refinement. Particles from selected classes were refined to the final maps by CTF refinement and nonuniform refinement. The overall resolution was estimated on the basis of gold-standard Fourier shell correlation of independently refined half maps and the 0.143 cutoff criterion. Local resolution was estimated in cryoSPARC using default parameters (figs. S12A and S18, M to P). Unless indicated otherwise, the maps shown in figures were sharpened with B factors estimated in the nonuniform refinement and low-pass filtered at their resolution.

The initial atomic model was built de novo into the sharpened, low-pass-filtered combined map of the apo Spf1 using Coot (58). Models for the other structures were built using Coot after rigid-body fitting of individual domains (or groups of TMs) of the apo Spf1 structure into corresponding maps. The following segments were not modeled because they were invisible or poorly resolved in the density maps: N to 3, 45 to 54 (a loop between TMa and TMb), 646 to 652 (a loop in the N domain), 853 to 957 (the arm domain), and 1212 to C. In addition, the segments 562 to 571 (a part of the N domain), 842 to 852 (the arm domain), and 958 to 962 (the connection from the arm domain to the P domain) were modeled with alanine because we could not unambiguously register amino acids. Model refinement was done in real space using Phenix 1.16 (59), with the refinement resolution limit set to the overall resolution of the map. MolProbity (60) and EMRinger (61) in the Phenix package was used for structural validation (table S1). Protein electrostatics were calculated using the Adaptive Poisson-Boltzmann Solver (62, 63) with default parameters built in PyMOL v2.3 (with monovalent ion concentrations of 0.15 M each). Cavities were detected by Hollow (64). UCSF Chimera (65), Chimera X (66), and PyMOL (Schrödinger) were used to prepare the structural figures in the paper.

Sample preparation and digestion for MS

Protein extracts were subjected to disulfide bond reduction with 5 mM tris(2-carboxyethyl) phosphine (TCEP; room temperature, 10 min) and alkylation with 25 mM chloroacetamide (room temperature, 20 min) followed by methanol-chloroform precipitation (Fig. 2F and fig. S9) or trichloroacetic acid precipitation (Fig. 1C), before protease digestion. Samples were resuspended in 100 mM EPPS (pH 8.5) containing 0.1% RapiGest and digested at 37°C for 2 hours with LysC protease at a 200:1 protein-to-protease ratio. Trypsin was then added at a 100:1 protein-to-protease ratio, and the reaction was incubated for 6 hours at 37°C. TMT labeling of each sample was performed by adding indicated amount of the 20 ng/μl stock of TMT or TMTpro reagent along with acetoneitrile to achieve a final acetoneitrile concentration of ~30% (v/v). Typically, 5 μl of TMTpro reagent was added for 50 μg of protein input (Fig. 2F and fig. S9) and 3 μl of TMT reagent for affinity purification samples (Fig. 1C). After incubation at room temperature for 1 hour, labeling efficiency of a small aliquot was tested, and the reaction was then quenched with hydroxylamine to a final concentration of 0.5% (v/v) for 15 min. The TMT-labeled samples were pooled together at a 1:1 ratio. The sample was vacuum centrifuged to near dryness, resuspended in 5% formic acid for 15 min, centrifuged at 10,000g for 5 min at room temperature, and subjected to C18 solid-phase extraction (Sep-Pak, Waters).

For whole-proteome samples (Fig. 2F and fig. S9), dried TMT-labeled sample was resuspended in 100 μl of 10 mM NH4HCO3 (pH 8.0) and fractionated using basic pH reverse-phase high-performance liquid chromatography (HPLC) (67). Briefly, samples were offline fractionated over a 90-min run into 96 fractions by high pH reverse-phase HPLC (Agilent Technologies LC1260) through an aerosol peptide column (Phenomenex; 250 mm × 3.6 mm) with mobile phase A containing 5% acetonitrile and 10 mM NH4HCO3 in liquid chromatography (LC)-MS grade H2O, and mobile phase B containing 90% acetonitrile and 10 mM NH4HCO3 in LC-MS grade H2O (both pH 8.0). The 96 resulting fractions were then pooled in a noncontinuous manner into 24 fractions [as outlined in supplementary figure 5 of (67)]. Fractions were vacuum centrifuged to near dryness. Each consolidated fraction was desalted by StageTip, dried again by vacuum centrifugation, and reconstituted in 5% acetonitrile (ACN), 1% formic acid (FA) for LC-MS/MS processing.

LC-MS/MS

For UV-cross-linking samples (Fig. 1C), MS data were collected using an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific) coupled to a Proxeon EASY-nLC1200 LC pump (Thermo Fisher Scientific). Peptides were separated on a 100-μm-inner-diameter microcapillary column packed in-house with ~35 cm of Accucore150 resin (2.6 μm, 150 Å, Thermo Fisher Scientific) with a gradient consisting of 5 to 22% (0 to 100 min), 22 to 28% (100 to 110 min) (ACN, 0.1% FA) over a total 120-min run at ~500 nl/min. Each analysis used the Multi-Notch MS3-based TMT method (68) to reduce ion interference compared with MS2 quantification, combined with newly implemented Real Time Search analysis software (69, 70). The scan sequence began with an MS1 spectrum (Orbitrap analysis; resolution 120,000 at 200 Th; mass range 400 to 1400 m/z; automatic gain control (AGC) target 1 × 106; maximum injection time 240 ms). Precursors for MS2 analysis were selected using a 3 s TopSpeed method. MS2 analysis consisted of collision-induced dissociation [quadrupole ion trap analysis; rapid scan rate; AGC 2.5 × 106; isolation window 0.7 Th; normalized collision energy (NCE) 35; maximum injection time 60 ms]. Monoisotopic peak assignment was used, and previously interrogated precursors were excluded using a dynamic window (120 s ± 7 ppm). After acquisition of each MS2 spectrum, a synchronous-precursor-selection (SPS) API-MS3 scan was collected on the top 10 most intense ions b or y ions matched by the online search algorithm in the associated MS3 spectrum (69, 70). MS2 precursors were fragmented by high-energy collision-induced dissociation (HCD) and analyzed using the Orbitrap (NCE 65; AGC 2.5 × 106; maximum injection time 200 ms, resolution 50,000 at 200 Th). Previously identified peptides corresponding to human SEC61B where included in a targeted mass list and given priority for MS2 and SPS-MS3.

For whole-cell proteome analysis (Fig. 2F and fig. S9), MS data were collected using an
Orbitrap Fusion Lumos mass spectrometer combined with a high-field asymmetric waveform ion mobility spectrometer (FAIMS) Pro interface, coupled to a Proxeon EASY-nLC1200 LC pump (Thermo Fisher Scientific). Peptides were separated on a 100-μm-inner-diameter microcapillary column packed in house with ~35 cm of Accucore150 resin (2.6 μm, 150 Å, Thermo Fisher Scientific) with a gradient consisting of 5 to 15% (0 to 70 min), 15 to 23% (70 to 85 min) (ACN, 0.1% FA) over a total 95-min run at ~500 nL/min. For analysis, we loaded one-third of each fraction onto the column. To reduce ion interference compared with MS2 quantification, each analysis used the Multi-Notch MS3-based TMT method (68), combined with newly implemented Real Time Search analysis software (69, 70) and the FAIMS Pro Interface. The scan sequence began with an MS1 spectrum (Orbitrap analysis; resolution 120,000 at 200 Th; mass range 400 to 1600 m/z; AGC target 8 × 10^5; maximum injection time 50 ms). Precursors for MS2 analysis were selected using a cycle type of 1.25 s/CV method [FAIMS CV = ~40~/60~/80 previously optimized for TMT multiplexed samples (77)]. MS2 analysis consisted of collision-induced dissociation (quadrupole ion trap analysis; rapid scan rate; AGC 1.0 × 10^5; isolation window 0.7 Th; NCE 35; maximum injection time 35 ms). Monoisotopic peak assignment and a precursor fit filter were used (70% for a fit window of 0.7 Th), and previously interrogated precursors were excluded using a dynamic window (120 ± 10 ppm). After acquisition of each MS3 spectrum, an SPS API-MS3 scan was collected on the top 10 most intense ions b or y ions matched by the online search algorithm in the associated MS3 spectrum. MS3 precursors were fragmented by HCD and analyzed using the Orbitrap (NCE 45; AGC 2.5 × 10^5; maximum injection time 200 ms, resolution was 50,000 at 200 Th).

Proteomics data analysis

Mass spectra were processed using a Comet-based (v2018.01 rev.2) in-house software pipeline (72, 73) or Sequest-HT (for Fig. 1C) using Proteome Discoverer (v2.3.0.420; Thermo Fisher Scientific).

The identification of UV-cross-linked proteins (Fig. 1C) was performed using the SEQUEST-HT engine (Proteome Discoverer v2.3.0.420; Thermo Fisher Scientific) against the UniProt S. cerevisiae (S288c) Reference Proteome (07/2017), as well as an in-house curated list of contaminants and the human SEC61B sequence, using the following parameters (after recalibration): a tolerance level of 10 ppm for MS1 and 0.7 Da for MS2 and false discovery rate (FDR) of the Percolator decoy database search was set to 1%. Trypsin and LysC were used as the digestion enzymes, two missed cleavages were allowed, and the minimal peptide length was set to seven amino acids. TMT tags on lysine residues and peptide N termini (+229.163 Da) and carbamidomethylation of cysteine residues (+57.021 Da) were set as static modifications, and oxidation of methionine residues (+15.995 Da) was set as a variable modification. For TMT-based reporter ion quantitation, we extracted (integration tolerance of 0.003 Da) the summed signal-to-noise ratio (S:N) for each TMT channel and found the closest matching centroid to the expected mass of the TMT reporter ion. For protein-level comparisons, peptide-spectrum matches (PSMs) were identified, quantified, and collapsed to a 1% peptide FDR, and then collapsed further to a final protein-level FDR of 1%. Moreover, protein assembly was guided by principles of parsimony to produce the smallest set of proteins necessary to account for all observed peptides. Proteins were quantified by summing reporter ion counts across all matching PSMs using in-house software, as described previously (73). PSMs with poor quality, MS2 spectra with more than 6 TMTpro reporter ion channels missing, or isolation specificity <0.6, or with TMT reporter summed S:Ns <200 or with no MS2 spectra were excluded from quantification.

Protein quantification values were exported for further analysis in Microsoft Excel and Perseus (74), and statistical test and parameters used are indicated in the corresponding datasets (data S1 and S2). Briefly, Welch’s t test analysis was performed to compare two datasets using the s0 parameter (in essence, a minimal fold change cutoff) and correction for multiple comparisons was achieved by the permutation-based FDR method, both functions that are built in in Perseus software. For whole-cell proteome (Fig. 2F and fig. S9) analysis, each reporter ion channel was summed across all quantified proteins and normalized assuming equal protein loading of all 16 samples. For affinity-purified samples (Fig. 1C), normalization based on SEC61B (total TMT sum S:N) was performed.

REFERENCES AND NOTES

17. B. K. Erickson et al., Active instrument engagement combined with a real-time database search for improved performance of sample multiplexing workflows. J. Proteome Res. 18, 1299–1306 (2019). doi:10.1021/acs.jproteome.8b00899

ACKNOWLEDGMENTS

We thank D. Toso and J. Remis for electron microscope operational support. The Nikon Imaging Center at HMS for training and 13 of 14

McKenna et al., Science 369, eaba5808 (2020) 25 September 2020

Downloaded from http://science.sciencemag.org/ on January 4, 2021
support; C. Yap at the Image and Data Analysis (IDAC) core at HMS and M. Hoyer for help with colocalization analysis; M. C. J. Yip for help generating reagents; the R. S. Hegde laboratory for mammalian Bpa suppression constructs; S. Klinge for the yeast integration plasmid; S. Elsasser, K. Y. S. Hung, and the D. Finley laboratory for advice and yeast strains; J. A. Paulo for proteomics support; T. A. Rapport and R. S. Hegde for critical reading of the manuscript; and Shao and Park laboratory members for discussions. Funding: This work was supported by the American Heart Association (grant no. 19POST134400029 to M.J.M.), the CRSP of HMS Department of Cell Biology (L.W.), NIH grant nos. R21NS093652 and R01NS110395 (J.W.H.), NIH grant no. DPGM137415 (S.S.), the Smith Family Foundation (S.S.), a Packard fellowship (S.S.), and the Vallee Scholars Program (S.S., E.P.). Author contributions: S.I.S. prepared cryo-EM samples; S.I.S. and E.P. collected and analyzed cryo-EM data; E.P. built atomic models of Spf1; M.J.M. and S.S. performed biochemical experiments; M.J.M., L.W., and S.S. generated cell lines; M.J.M. performed all IF experiments; A.O. performed all TMT-MS analysis under the supervision of J.W.H.; and S.S. and E.P. supervised the project and wrote the paper with input from all authors. Competing interests: J.W.H. is a founder and advisory board member for Daraway Therapeutics, an adviser for X-Chem Inc.; a reviewing editor for Elife, and an associate editor for Science Advances. Data and materials availability: EM maps and models are available through EM Data Bank (EMDB) and the Protein Data Bank (PDB) under the following accession codes: EMD-22260 and PDB ID 6XMP for apo Spf1; EMD-22261 and 6XMQ for AMP-PCP bound Spf1; EMD-22262 and 6XMS for AlF4-bound Spf1; EMD-22263 and 6XMT for BeF3-bound Spf1; and EMD-22264 and 6XMU for BeF3/endogenous substrate-bound Spf1. Renewable yeast strains, cell lines, and biochemical reagents are available by contacting E.P. or S.S.

SUPPLEMENTARY MATERIALS

science.sciencemag.org/content/369/6511/eabc5809/suppl/DC1
Figs. S1 to S20
Table S1
Movies S1 to S3
Data S1 to S2
MDAR Reproducibility Checklist
View/request a protocol for this paper from Bio-protocol.

1 May 2020; accepted 28 July 2020
10.1126/science.abc5809
The endoplasmic reticulum P5A-ATPase is a transmembrane helix dislocase
Michael J. McKenna, Sue Im Sim, Alban Ordureau, Lianjie Wei, J. Wade Harper, Sichen Shao and Eunyong Park

Science 369 (6511), eabc5809.
DOI: 10.1126/science.abc5809

Dissecting membrane dislocation
Mistargeting and misinsertion of membrane proteins causes proteostasis stress and dysfunction of intracellular organelles, which can lead to disease. McKenna et al. found that a conserved orphan P-type adenosine triphosphatase (ATPase) transporter removes misinserted transmembrane segments from the endoplasmic reticulum (ER). Functional reconstitutions and cryo–electron microscopy structures show how this ATPase selectively extracts mitochondrial proteins that are mistargeted to the ER and transmembrane segments that are inserted in the wrong orientation. This work identifies polypeptides as a new class of P-type ATPase substrates and defines a new protein quality-control mechanism at the ER.

Science, this issue p. eabc5809

ARTICLE TOOLS
http://science.sciencemag.org/content/369/6511/eabc5809

SUPPLEMENTARY MATERIALS
http://science.sciencemag.org/content/suppl/2020/09/23/369.6511.eabc5809.DC1

REFERENCES
This article cites 74 articles, 19 of which you can access for free
http://science.sciencemag.org/content/369/6511/eabc5809#BIBL

PERMISSIONS
http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service