Click here to check out our latest publication list on PubMed

(∗ denotes equal contribution; †, the corresponding author)

18. Tucker, K. and †Park, E. (2019). Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution. Nature Structural & Molecular Biology. 26:1158-1166. (preprint: bioRxiv 798371; doi:

17. Ma, C., Wu, X., Sun, D., Park, E., Catipovic, M.A., Rapoport, T.A., Gao, N., and Li, L. (2019). Structure of the substrate-engaged SecA-SecY protein translocation machine. Nature Communications. 10(1):2872.

16. Itskanov S. and †Park, E. (2019). Structure of the posttranslational Sec protein-translocation channel complex from yeast. Science. 363:84-87. doi: 10.1126/science.aav6740

Prior 2018

15. Park, E. and MacKinnon, R. (2018). Structure of the CLC-1 chloride channel from Homo sapiens. Elife. 7 pii:e36629. doi: 10.7554/eLife.36629

14. Rapoport, T.A., Li, L., and Park, E. (2017). Structural and mechanistic insights into protein translocation. Annual Review of Cell and Developmental Biology. 33:369-390 (review)

13. Park, E., Campbell E., and MacKinnon R. (2017). Structure of a CLC-K chloride channel by cryo-electron microscopy. Nature. 541:500-505.

12. ∗Li, L., ∗Park, E., Ling, J., Ingram, J., Ploegh, H., and Rapoport, T.A. (2016). Crystal structure of a substrate-engaged SecY protein-translocation channel. Nature. 531:395-399

11. Park, E., Ménétret, J.F., Gumbart, J.C., Ludtke, S.J., Li, W., Whynot, A., Rapoport, T.A., and Akey, C.W. (2014). Structure of the SecY channel during initiation of protein translocation. Nature. 506:102-106.

10. ∗Park, E., ∗Lee, J.W., ∗Yoo, H.M., Ha, B.H., An, J.Y., Jeon, Y.J., Seol, J.H., Eom, S.H., and Chung, C.H. (2013). Structural alteration in the pore motif of the bacterial 20S proteasome homolog HslV leads to uncontrolled protein degradation. Journal of Molecular Biology. 425:2940-2954.

9. Park, E., and Rapoport, T.A. (2012). Bacterial protein translocation requires only one copy of the SecY complex in vivo. Journal of Cell Biology. 198:881-893.

8. Park, E., and Rapoport, T.A. (2012). Mechanisms of Sec61/SecY-mediated protein translocation across membranes. Annual Review of Biophysics. 41:21-40. (review)

7. Park, E., and Rapoport, T.A. (2011). Preserving the membrane barrier for small molecules during bacterial protein translocation. Nature. 473:239-242.

6. ∗Lee, J.W., ∗Park, E., Jeong, M.S., Jeon, Y.J., Eom, S.H., Seol, J.H., and Chung, C.H. (2009). HslVU ATP-dependent protease utilizes maximally six among twelve threonine active sites during proteolysis. Journal of Biological Chemistry. 284:33475-33484.

5. ∗Park, E., ∗Lee, J.W., Eom, S.H., Seol, J.H., and Chung, C.H. (2008). Binding of MG132 or deletion of the Thr active sites in HslV subunits increases the affinity of HslV protease for HslU ATPase and makes this interaction nucleotide-independent. Journal of Biological Chemistry. 283:33258-33266.

4. Ménétret, J.F., Hegde, R.S., Aguiar, M., Gygi, S.P., Park, E., Rapoport, T.A., and Akey, C.W. (2008). Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome. Structure. 16:1126-1137.

3. Ménétret, J.F., Schaletzky, J., Clemons, W.M., Jr., Osborne, A.R., Skånland, S.S., Denison, C., Gygi, S.P., Kirkpatrick, D.S., Park, E., Ludtke, S.J., Rapoport, T.A., and Akey, C.W. (2007). Ribosome binding of a single copy of the SecY complex: implications for protein translocation. Molecular Cell. 28.1083-1092.

2. ∗Lee, J.W., ∗Park, E., Bang, O., Eom, S.H., Cheong, G.W., Chung, C.H., and Seol, J.H. (2007). Nucleotide triphosphates inhibit the degradation of unfolded proteins by HslV peptidase. Molecules and Cells. 23:252-257.

1. Park, E., Rho, Y.M., Koh, O.J., Ahn, S.W., Seong, I.S., Song, J.J., Bang, O., Seol, J.H., Wang, J., Eom, S.H., and Chung, C.H. (2005). Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. Journal of Biological Chemistry. 280:22892-22898.